

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01

CHEMISTRY

(Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	1

Question Number	Key	Question Number	Key
1	С	21	В
2	В	22	D
3	Α	23	Α
4	D	24	В
5	Α	25	D
6	С	26	В
7	Α	27	D
8	Α	28	D
9	В	29	D
10	С	30	В
11	В	31	D
12	D	32	D
13	С	33	Α
14	D	34	Α
15	В	35	В
16	С	36	Α
17	Α	37	Α
18	С	38	В
19	Α	39	С
20	С	40	С

TOTAL 40

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02

CHEMISTRY

(Core Paper 2)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

1	(a)	(i) (ii) (iii) (iv) (v) (vi)	Fe/Cu ALLOW Zn C/N/S/F/C1/Br O/S C Li/Na/K ALLOW F CU/Zn/Br/Kr	[1] [1] [1] [1] [1] [1]
	(b)		argon - light bulbs; chlorine - kills bacteria; carbon - as lubricant; helium - in balloons	[4]
	(c)	(i) (ii) (iii)	covalent BrF ₅ ALLOW F ₅ Br ions/charged particles; NOT: particles not free to move in solid/free to move in molten/liquid state	[1] [1]
2	(a)		drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton ALLOW: cut the string NOT: heat (the acid) NOT: pull the string	[1]
	(b)	(i) (ii) (iii)	correct plotting including 0-0 point (-1 per omission or error) best curve drawn and to go through origin no more gas produced/reaction finished; all zinc reacted/used up	[2] [1] [2]
	(c)		graph drawn with faster initial rate and starting at 0-0; ALLOW: straight line as initial rate ends up at 55 cm ³	[2]
	(d)	(i) (ii) (iii)	2 (HC <i>l</i>) zinc chloride 136 IGNORE units	[1] [1] [1]
	(e)		substance containing only one type of atom/substance which cannot be broken down to any other substance by <u>chemical means</u> NOT 'can't be split' alone NOT is a pure substance	[1]
3	(a)	(i) (ii) (iii)	evaporation/vaporisation/boiling freezing/solidification NOT: fusion condensing/condensation/liquefaction	[1] [1] [1]
	(b)	(,	2 nd box ticked	[1]
	(c)		A; energy needed to overcome forces between molecules/idea of energy input/ taking in heat	[2]
	(d)	(i) (ii) (iii)	chlorine bromine sodium chloride	[1] [1] [1]

Page 2	Page 2 Mark Scheme		Paper
	IGCSE EXAMINATIONS – June 2003	0620	2

(e)	(i) (ii) (iii)	diffusion NOT: Brownian motion ammonium chloride NOT: ammonia chloride ammonia diffuses or moves faster/HC <i>l</i> diffuses or moves slower/ammonia has lower mass/HC <i>l</i> higher mass/molecules of HC <i>l</i> and ammonia move at different speeds NOT: ammonia evaporates faster/HC <i>l</i> evaporates more slowly	[1] [1] [1]			
(f)		neutralisation/acid base NOT: exothermic NOT: addition	[1]			
(g)	(i)	thermometer	[1]			
	(11)	reference to the solid or melting point of the solid is needed for the mark. boiling point of water too low to get solid to melt/boiling water cannot get to 155°C NOT: boiling point of water is only 100°C/boiling point of water too low.	[1]			
	(iii)	so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places ALLOW: so that temperature of liquid is balanced NOT: to keep temperature constant				
(a)	(i) (ii)	<u>breaking down</u> of molecules substances using <u>heat</u> substance which speeds up a reaction NOT: alters/changes rate of reaction NOT: speeds up and slows down rate	[1] [1]			
(b)		ethene/ethylene NOT: formula	[1]			
(c)	(i)	paraffin	[1]			
	(11)	4000g/4kg (correct unit needed)	[1]			
	(iii)	$C_2H_4; H_2$	[2]			
(d)	(i)	two units polymerised with continuation bonds at either end and hydrogen atoms drawn ALLOW: $-CH_2CH_2CH_2CH_2$ - ALLOW: $-[-CH_2CH_2 -]_{-n}$ ALLOW: $-[-CH_2 -]_{-n}$	[1]			
	(ii)	addition (polymerisation)	[1]			
(a)		(sodium) hydroxide/ammonia; → green/grey green; silver nitrate; → yellow; ALLOW: lead nitrate NOT: cream	[2] [2]			
		ALLOW: bubble chlorine \rightarrow grey/black (precipitate)silver nitrate; \rightarrow white:barium chloride/nitrate; \rightarrow white;ALLOW: lead acetate \rightarrow white;	[2] [2]			

5

4

Page 3			6	Mark Scheme Syllabus Pa				
				IGCSE EXAMINATIONS – June 2003	0620	2		
	(b)		filtratic be pre NOT: sodiur NOT: evapo ALLO	on/filtering or diagram of correct apparatus for filtration (esent on diagram) decanting n chloride through filter paper/shown on diagram; filtrate through filter paper rate off water from sodium chloride/suitable diagram W: distilling off <u>water</u>	filter paper	must [3]		
	(c)		<u>differe</u> (chem (refere of eler	nt atoms/elements ically) joined/bonded/combined (both points needed) ence to mixtures = 0 unless qualified enough in time fram ments which are then chemically combined)	ne e.g. a m	ixture [1]		
	(d)	(i) (ii)	chlorir sodiur	ne/C <i>l</i> ₂ n/Na		[1] [1]		
6	(a)		potass	sium/magnesium/aluminium		[1]		
	(b)		they d metal NOT:	lid not have electricity/did not know about electrolysis/d existed did not have the right technology	id not kno	w the [1]		
	(c)	(i) (ii) (iii)	indicat faster OR nu uraniu mediu atoms neutro NOT: indicat ALLO NOT: NOT:	tion that bubbles produced rapidly or quickly/slower than than zinc imber of bubbles produced intermediate between magnes im dissolved slower than magnesium but faster than z m rate etc. of same element with different mass number/differ ons/different nucleon number compounds/molecules with different mass number tion of use for energy – nuclear power stations/nuclear er W: atomic/nuclear bombs curing cancer/medical uses 'for fuel'	magnesiu sium and z zinc/dissolv rent numb nergy	m but inc; [1] res at [1] rer of [1] [1]		
	(d)		magne ALLO	esium oxide W: MgO		[1]		
	(e)	(i)	idea o	f mixture of (different) metals		[1]		
		(ii)	alloys corros NOT: NOT: NOT:	harder/stronger/decreased malleability/increased toughn ion resistance/heat or electrical resistance increased increase in melting point cheaper improving properties	ess/increas	sed [1]		
	(f)		remov ALLO	es oxygen from zinc oxide W: definition of reduction involving oxidation numbers/ele	ctron trans	[1] fer		
	(g)	(i)	revers	ible reaction		[1]		
		(ii)	ALLO 76-80	W: equilibrium %		[1]		
	(h)	(i) (ii)	correct loses forms loses	t electronic structure of Mg (2.8.2) on diagram two electrons/loses its valence electrons = 2 Mg ²⁺ ion = 1 electron(s) = 1		[1]		
			forms	Mg ²⁺ ion by losing electrons = 2				

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	3

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1	(a)		A correct equation either CO If not balanced but otherwise	or CO ₂ as product correct [1] ONLY	[2]	
	(b)	(i) (ii)	$C + O_2 \rightarrow CO_2$ NOT w (higher in furnace) no oxygen carbon dioxide reacts with ca	vord equation n left arbon (to give carbon monoxide)	[1] [1] [1]	
			OR incomplete combustion of	of carbon	[2]	
			OR either equation gains bot $CO_2 + C = 2CO \text{ or } 2C + O_2 =$	h marks 2CO		
			OR carbon dioxide reacts with carbon		[1] [1]	
	(c)		limestone + sand \rightarrow slag OR calcium carbonate + silic	on (IV) oxide \rightarrow calcium silicate (+ carbon dioxide)	[2]	
			For knowing that impurity is	sand [1] ONLY		
			Accept calcium oxide and sil Accept lime	icon oxide		
	(d)	(i) (ii) (iii)	Cutlery or chemical plant or watches or utensils or surgical instruments or cars or sinks or aircraft or garden tools nickel or chromium or molybdenum or niobium or titanium blow air/oxygen through carbon becomes carbon dioxide carbon dioxide escapes as gas silicon and phosphorus become oxides calcium oxide or calcium carbonate forms clear			
			Any FOUR	NOT blast furnace	[4]	
	(e)		anode tin cathode iron or steel tin salt or tin ions as electroly NOT oxide or hydroxide or ca	NOT impure time /te arbonate	[1] [1] [1]	
				TOTAL :	= 16	

	Page 2				Mark Scheme	Syllabus	Paper
				IGO	CSE EXAMINATIONS – June 2003	0620	3
2	(a)	(i) (ii)	3 high n	ignore any c ıelting or boili	harges ing point		[1]
			poor c	onductor of e	lectricity or heat		
			brittle	WO			[0]
			NOT	nsoluble, dull,	or malleable		[2]
		(iii)	carbor silicon	ו, graphite dia (IV) oxide or	amond silicon, germanium r silica or silicon dioxide or silicon oxide		[1]
		(1.)	or sar	nd or silicon ca	arbide or named polymer		[1]
		(1V)	cond	looks tetrahec	dral or shows continuation		['] [1]
			For gr Accep For po	aphite layers t any macrom blymer repeat	[1] weak bonds between layers [1] holecule, no link with (iii) unit [1] continuation [1]		
	(b)	(i)	white	precipitate			[1]
	()	()		upon a preci	pitate		[4]
		(ii)	blue p	recipitate			['] [1]
			does r	upon a preci ot dissolve in	pitate excess		[1]
	(-)	(1)					[.]
	(C)	(1)	conse	er of moles Co eq number of	$O_2 = 0.24/24 = 0.01$ moles of CaCO ₃ and MgCO ₃ = 0.01		[0]
		(ii)	Calcu one ta	ate the volum	There of hydrochloric acid, 1.0 mole/dm ³ , needed	ed to react v	ری] with
			numb Expec conse	er of moles of ct same as an equentially to t	^c CaCO ₃ and MgCO ₃ in one tablet = 0.01 swer to (c)(i). NO marks to be awarded. Ju his response	ıst mark	
			conse to rea	q number of ct with one tal	moles of HC <i>l</i> needed blet = 0.02		[1]
			conse tablet	aq volume of h = 0.02 dm ³ or	hydrochloric acid, 1.0 mole/dm ³ , needed to r r 20 cm ³	react with c	ne [1]
						Т	OTAL = 16
3	(a)	(i)	Corre	ct equation			[2]
			For gi	ving correct fo	ormula of alkane and alkene [1] only hydrogen		
		(ii)	chlori	ne Ni skt sv 0005			[1]
			or hig	h temperature	e MAX 1000°C		[1]
			ignore	e comment 'ca	atalysť		
	(b)	(i)	same	molecular for	<u>mula</u>		[1]
		(ii)	differe but-2-	ene or cyclobi	or structural formulae utane		[1] [1]
		. /	corres	ponding struc 2-butene	tural formula		[1]
	(c)		butano	ol	ignore numbers		[1]
			butane dibron	e nobutane	ignore numbers ignore numbers		[1] [1]

Page 3			3		Mark	Scheme	Syllabu	s Paper
				IG	CSE EXAMINA	TIONS – June 2003	0620	3
	(4)	(1)		_				[4]
	(a)	(1)	propene	9				[']
			CH₃—C	CH==CH ₂				[1]
		(ii)	Correct ignore p COND	structure of point of attac upon repeat	repeat unit hment of este unit	er group		[1]
	shows continuation If chain through ester group [0] out of [2] (iii) do not decay or non-biodegradable				[1]			
			shortag visual p forms m	e of sites or ollution nethane	amount of wa	ste per year		[0]
		(iv)	form po NOT ca	isonous or t Irbon dioxide	oxic gases or e, harmful, sul	named gas CO, HC <i>l</i> I phur dioxide	HCN	[2] [1]
								TOTAL = 18
4	(a)	(i)	Correct not bala 2Pb(NC	equation anced [1] ON $O_3)_2 = 2PbO$	ILY + 4NO ₂ + O ₂			[2]
			Pb(NO ₃	3) ₂ = PO + 2	$NO_2 + \frac{1}{2}O_2$			
		(ii)	potassi	um nitrate $ ightarrow$	potassium ni	trite + oxygen		[1]
	(b)	(i)	close o	r tightly pack	ked			[1]
			ordered vibratio	l or lattice nal				[1] [1]
		(ii)	NOT for melting	rces or freezina	or fusion or s	olidification		[1]
	(c)	(1)	020/000	and nitrogo	n (in air)			[1]
	(0)	(')	react at	high temper en in fuel [0]	ratures (and h out of [2]	igh pressure)		[1]
		(11)	react w	<u>c converter</u> ith carbon m	onoxide or hy	drocarbons		
			form nit ANY TV	rogen VO				[2]
	(d)		Add exc	cess lead ox	ide to nitric ac	sid		[1]
			filter NC evapora	DT if residue ate or heat s	is lead nitrate olution	•		[1] [1]
								TOTAL = 14
5	(a)		protons		2			
-	(~)		electror	าร เร	- 2 4			[3]

(b) ((i)	La ³⁺ + 3e- = La	[1]
Ì	(ii)	hydrogen	[1]
-		bromine NOT Bromide	[1]
		caesium hydroxide	[1]
		ignore any comments about electrodes	

Page 4		Mark Scheme	Syllabus	Paper
		IGCSE EXAMINATIONS – June 2003	0620	3
(c)	metal hydro	hydroxide or hydroxide ions gen		[1 [1
(d)	correc charg 8e arc All thr Two p If cova	et formula 1Ba to 2C <i>l</i> es correct ound the anion ee points points ONLY [1] alent [0] out [2]		[2
(e)	altern patter	ating (positive and negative) n		[1 [1
(f) (i) (ii)	bariur bond bond more	n - oxygen or ionic forming energy released/exothermic breaking energy taken in/endothermic energy released		[1 [1 [1 [1
			Т	OTAL = 17

Total for Paper: 80

https://xtremepape.rs/

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05

CHEMISTRY

(Practical)

Page 1				Mark Scheme				Syllabus	Paper
				IG	CSE EXAMINATI	ONS – June 2003		0620	5
1			Table Exper	of results iment 1	Initial and fina	al readings recorde to 1 decin	d nal place		[1] [1]
			Experi	iment 2	Initial and fina	al readings recorde to 1 decin	d nal place		[1] [1]
			Result	ts comparable	e to Supervisor's	results ± 1 cm ³			[2]
	(a)		red/bu	irgundy/browr	I				[1]
	(b)		yellow IGNOI	(1) to blue/bl RE green	ack (1)	see Supervisor			[2]
	(c)	(i) (ii) (iii) (iv)	Experi $\triangle 2 x,$ potass <u>not</u> dif 2 x vo 2 x ioo	iment 1 double volum sium iodate le ferent concen lume from tab line formed	e (1) in Experim ss concentrated trations le for Experimer	ent 1 (1) <u>not</u> just m solution C than B nt 1 (1) unit (1)	nore or vice ve	ersa	[1] [2] [1] [2] [1]
	(d)		Indica <u>not</u> tes	tor (1) referentst for I_2/I^-	ice to accuracy (1)/end-point/see m	nore clea	rly [Questio	[2] n total: 18]
2	(a)		bubble	es/condensati	on/goes black			max 2	[2]
	(b)		filtrate residu	e - colourless e - green	<u>not</u> clear				[1] [1]
	(c)	(i) (ii)	efferve limewa solutic blue (* royal/c	escence/fizz/b ater \rightarrow milky on is blue 1) precipitate deep blue (1)	oubbles (1) solution (1)				[1] [1] [1] [2]
	(d)	(i) (ii) (iii)	white white white	(1) precipitate (1) precipitate precipitate (1)	e (1) dissolves in e (1) dissolves (1	excess (1))			[3] [3] [1]
	(e)		zinc (1	I) sulphate (1))	reversed	= 0		[2]
	(f)		coppe hydrat	r (1) carbonat ed (1)	e (1)	reversed = 0		max 2	[2]
								[Questio	n total: 22]
								[Total for	paper: 40]
			Result	ts obtained fo	r Question 1/cm	3			
			Exper Exper	iment 1 iment 2	1 st 16.5 8.3	2 nd 16.3 8.2			

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06

CHEMISTRY

(Alternative to Practical)

Page 1 Mark Scheme			Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

1	(a)		A = mortar (1) B = stirrer/stirring rod (1) C = tripod (1)	<u>not</u> thermometer	[4]
			D = Bunsen Burner (1)		[4]
	(b)		filtration		[1]
	(c)		D or description		[1]
2	(a)		because precipitate formed/goes clousulphur (1)/turbid	udy (1)	[2]
	(b)		reference to fair test/comparison/sam	ne depth	[1]
	(c)		sodium thiosulphate/water 1 st /2 nd acid	d, last	[1]
	(d)	(i)	all points correct (3), -1 for any incorr smooth line (1) label (1)	ect	[5]
		(ii)	line lower down (1) does not touch other line (1)		[2]
	(e)		times would be longer (1) because so surface area/depth (1)	olution more spread out/reference to	[2]
3			Table of results correct burette readings in table (3) i.e. 16.8, 17.1 and 25. Differences correctly completed (1)	or 17.2, 18.9, 26.5 5 Difference 7.6	
	(a)	(i) (ii) (iii) (iv)	i.e. 8.4 Experiment 1 twice volume/more than twice as much Solution B was 2x (1) concentration of B more concentrated than C (1 only) volume A = 33.6 (1) cm ³ (1)/34.4cm ³	ch of C (1) or similar	[4] [1] [1] [2]
		()	2x iodine produced (1)		[3]
	(b)		$\begin{array}{ll} \text{reference to accuracy (1) indicator (1)}\\ \underline{\text{not}} \text{ test for } I_2 & \text{max 2} \end{array}$)/easier to see	[2]
4	(c)		effervescence/fizz/bubbles (1) limewater milky (1)/blue solution		[2]
	(d)	(ii)	blue (1) precipitate (1) royal/dark blue (1) solution (1)		[4]
	(e)	(i) (ii)	white (1) precipitate (1) dissolves (1) white (1) precipitate (1) dissolves (1)		[3] [3]
	(f)		Solid D is a sulphate (1) hydrated (1)		[2]
	(g)		copper (1)/Cu ²⁺ (2)		[2]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003	0620	6

5	(a) (i) (ii)	Smooth line graph result at 5 minutes (1) not on curve (1)/gas escapes, gone down	[1]
	(b)	0.8 g	[1]
	(c)	reference to leak/loss of gas (1) ∴ volumes lower (1)	[2]
6		Known mass of beach sand (1) add excess (1) dilute hydrochloric acid (1) filter (1) wash (1) dry (1) residue and weigh sand (1) working out result (1) max 6 of 8	[6]
			[Total: 60]
			[]

	maximum	minimum mark required for grade:				
	mark available	A	С	Ш	F	
Component 1	40	-	26	20	17	
Component 2	80	-	52	36	27	
Component 3	80	53	31	-	-	
Component 5	40	31	24	18	14	
Component 6	60	42	32	21	15	

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2003 examination

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.